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My connections to Mark

Met him at CSL@UIUC as visiting grad student, later as postdoc

Had read by then several of his papers on passivity, haptics, and
teleoperation

Almost had him as my dean at UC Santa Cruz (but I left and he turned
down the offer)

Had read by then several of his papers on multi-agent systems

Worked with him in organizing committee of CDC10 (Mark was General
Chair)

And of course, facebook!
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Fun photos I’ve found on facebook
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Life as Dean of UTD is good!
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Networked strategic scenarios

Server in link

Wireless voice link

Hardline voice link

Blue action unit

Red action unit

Sensing asset

Blue Human

Red Human

information is distributed
across multiple layers

partial, evolving, dynamic
interactions

agents cooperating and
competing with each other

Individual agents, not networks, are decision makers
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Literature on games played on networks

In Economics, network games: equilibria characterization when agents have
incomplete information (e.g., known degree but unknown neighbor identities)

In Computer Science, graphical games: algorithms (and their complexity)
to compute equilibria in two-action complete information games on networks

In Controls, current interest on

coordination in adversarial teams

multi-layer scenarios with interacting agents

distributed learning with partial agent
knowledge of global information
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What are we after

Emphasis not on equilibria, but on how to get there

Objective:

coordination algorithms to help agents decide how to play the game

under partial information, local interactions

Characterization of algorithm features regarding

performance gap between distributed and centralized setups

robustness to changing interactions, noise, message dropping

preservation of private information
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Outline

1 Problem statement
Two-network zero-sum game
Primer on graph theory

2 Distributed convex optimization
One-network problem
Distributed dynamics and convergence

3 Distributed convergence to Nash equilibria
Reformulation of the two-network zero-sum game
Distributed dynamics and convergence
Dynamic interaction topologies and robustness to link failures
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Two-network zero-sum game

Σ1

Σ2

Σeng

Each player is a network of cooperating agents

x1 ∈ X1 ⊂ Rd1 state of Σ1, x2 ∈ X2 ⊂ Rd2 state of Σ2

within each network, agents share info via E1, E2
across networks, agents interact via Eeng
payoff function

U(x1, x2) =

n1∑
i=1

f i1(x1, x2) =

n2∑
j=1

f j2 (x1, x2)

f i1 available to i in Σ1, f j2 available to j in Σ2

Σ1 wishes to maximize U , Σ2 wishes to minimize U
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Scenario with n communication channels

• capacity of ith channel is proportional to

log(1 + βpi/(σi + ηi))

with signal power pi, noise power ηi, receiver noise σi

• signal, noise powers satisfy budget constraints

n∑
i=1

pi = P

n∑
i=1

ηi = C

• Blue team selects

m1 channels with signal power x1,

n− 1−m1 with x2,

one channel with P −m1x1 − (n− 1−m1)x2

• Red team similarly
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Sample scenario - cont’d

Scenario fits two-network zero-sum game paradigm

Capacity of ith channel

f i(x, y) = log
(

1 +
βxa

σi + yb

)
(for some a, b ∈ {1, 2})

Capacity of nth channel

fn(x, y) = log
(

1 +
β(P −m1x1 − (n− 1−m1)x2)

σn + C −m2y1 − (n− 1−m2)y2

)

Blue/red teams seek to maximize/minimize total capacity
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From the agent’s viewpoint

Network only knows objective function collectively, not at agent level

xi1 ∈ X1 is estimate of agent i about state x1 of Σ1

xj2 ∈ X2 is estimate of agent j about state x2 of Σ2

Collective estimates:

x1 = (x11, . . . , x
n1
1 ) ∈ (Rd1)n1 x2 = (x12, . . . , x

n2
2 ) ∈ (Rd2)n2

Objective: through distributed interactions,

agents on Σ1 agree on state x∗1 = 1d1
⊗ x∗1 = (x∗1, . . . , x

∗
1)

agents on Σ2 agree on state x∗2 = 1d2
⊗ x∗2 = (x∗2, . . . , x

∗
2)

(x∗1, x
∗
2) is Nash equilibrium of 2-network zero-sum game

⊗ is Kronecker product
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Graph-theoretic notions

Network topology modeled via undirected graph G = (V, E)

V is set of agent identities

E is set of edges between agents – information sharing

Relevant matrices and their properties

A is adjacency matrix (who interacts with whom)

L = diag(A1n)−A is Laplacian matrix

L positive semidefinite

L1n = 0 (0 is an eigenvalue of L)

G is connected if and only if rank(L(G)) = n− 1
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One-network problem

Simpler setup with only one network: objective is to minimize

f(x) =

n∑
i=1

f i(x)

Reformulation for network of agents:

agent i has own estimate xi, so x = (x1, . . . , xn)

all agents should agree on minimizer, x = 1n ⊗ x

(⇔ (L⊗ Id)x = 0nd)

Problem reformulated on Rnd,

minimize f̃(x) =

n∑
i=1

f i(xi)

subject to Lx = 0nd
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Solutions as saddle points

For G connected, {f i}ni=1 differentiable and convex, let F : Rnd × Rnd → R

F (x, z) = f̃(x) + xTLz +
1

2
xTLx

Proposition

F is differentiable, convex in its first argument and linear in its second,

1 if (x∗, z∗) is saddle point of F , then x∗ is a solution

2 if x∗ is a solution, then there exists z∗ with Lz∗ = −∇f̃(x∗) such that
(x∗, z∗) is saddle point of F
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Distributed solution to optimization problem

Saddle-point dynamics of F is distributed!

From network viewpoint,

ẋ = −Lx− Lz −∇f̃(x)

ż = Lx
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Distributed solution to optimization problem

Saddle-point dynamics of F is distributed!

From agent viewpoint,

ẋi = −
∑
k∈N i

(xi − xk)−
∑
k∈N i

(zi − zk)−∇f i(xi)

żi =
∑
k∈N i

(xi − xk)
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Distributed solution to optimization problem

Saddle-point dynamics of F is distributed!

From network viewpoint,

ẋ = −Lx− Lz −∇f̃(x)

ż = Lx

Theorem

For G connected and {f i}ni=1 differentiable and convex,

the projection onto first component of trajectories asymptotically
converges to solution set

Can be extended to locally Lipschitz and convex functions (not differentiable)

If solution set is finite, then convergence to a solution is guaranteed
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Lifting the zero-sum game

Recall objective is

agents on Σ1 agree on state x∗1 = 1d1
⊗ x∗1 ⇐⇒ L1x1 = 0n1d1

agents on Σ2 agree on state x∗2 = 1d2
⊗ x∗2 ⇐⇒ L2x2 = 0n2d2

(x∗1, x
∗
2) is Nash equilibrium of 2-network zero-sum game

⇐⇒ ?
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∗
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Evaluation of objects like f i1(x1, x2) requires

estimate of own network’s state xi1

estimate of other network’s state info from neighbors in Σeng
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Lifting the zero-sum game

Recall objective is

agents on Σ1 agree on state x∗1 = 1d1
⊗ x∗1 ⇐⇒ L1x1 = 0n1d1

agents on Σ2 agree on state x∗2 = 1d2
⊗ x∗2 ⇐⇒ L2x2 = 0n2d2

(x∗1, x
∗
2) is Nash equilibrium of 2-network zero-sum game ⇐⇒ ?

Each agent in Σ1 has fi1 : Rd1 × Rd2|N in
Σeng

(vi)| → R concave-convex such that

f̃ i1(x1, x2, . . . , x2) = f i1(x1, x2)

For convenience, f̃ i1 : Rd1 × Rd2n2 → R, f̃ i1(x1,x2) = fi1(x1, π
i
1(x2))

Similar construction for agents in Σ2

(πi1(x2) are values received by from neighbors in Σeng)
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Characterization of Nash equilibria via saddle property

For Σ1, Σ2 connected, let

F1(x1, z1,x2) = −Ũ(x1,x2) + xT
1 L1z1 +

1

2
xT
1 L1x1

F2(x2, z2,x1) = Ũ(x1,x2) + xT
2 L2z2 +

1

2
xT
2 L2x2

(x∗1, z
∗
1 ,x

∗
2, z
∗
2) satisfies (F1, F2)-saddle property if

(x∗1, z
∗
1) saddle of (x1, z1) 7→ F1(x1, z1,x

∗
2)

(x∗2, z
∗
2) saddle of (x2, z2) 7→ F2(x2, z2,x

∗
1)

Proposition

F1 and F2 convex in first argument, linear in second, and concave in third,

1 If (x∗1, z
∗
1 ,x

∗
2, z
∗
2) satisfies (F1, F2)-saddle property, then (x∗1,x

∗
2) is Nash

equilibrium of Gadv-net

2 if (x∗1,x
∗
2) is Nash equilibrium of Gadv-net, then there exists z∗1 , z

∗
2 such

that (x∗1, z
∗
1 ,x

∗
2, z
∗
2) satisfies saddle property for (F1, F2)
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Distributed solution to 2-network zero-sum game

‘Saddle-point dynamics for (F1, F2)’ is distributed!

From network viewpoint,

ẋ1 = −L1x1 − L1z1 +∇x1Ũ(x1,x2)

ż1 = L1x1

ẋ2 = −L2x2 − L2z2 −∇x2
Ũ(x1,x2)

ż2 = L2x2
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Distributed solution to 2-network zero-sum game

‘Saddle-point dynamics for (F1, F2)’ is distributed!

From agent viewpoint,

ẋi1 =
∑
k∈N i1

(xk1 − xi1) +
∑
k∈N i1

(zk1 − zi1) +∇xi1
f̃ i1(xi1,x2)

żi1 =
∑
k∈N i1

(xi1 − xk1)

ẋj2 =
∑
l∈N j2

(xl2 − x
j
2) +

∑
l∈N j2

(zl2 − z
j
2)−∇xj2

f̃ j2 (x1, x
j
2)

żj2 =
∑
l∈N j2

(xj2 − xl2)
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Distributed solution to 2-network zero-sum game

‘Saddle-point dynamics for (F1, F2)’ is distributed!

From network viewpoint,

ẋ1 = −L1x1 − L1z1 +∇x1Ũ(x1,x2)

ż1 = L1x1

ẋ2 = −L2x2 − L2z2 −∇x2
Ũ(x1,x2)

ż2 = L2x2

Theorem (Hierarchy of saddle-point problems)

For zero-sum game, with Σ1 and Σ2 connected, U : X1 × X2 → R differentiable
and strictly concave-convex that admits lift to Ũ ,

projection onto the first and third components of trajectories
asymptotically converge to agreement on the Nash equilibrium

Can also be extended to locally Lipschitz (not differentiable) scenario
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Proof summary and consequences

Proof uses careful combination of

stability analysis (Lyapunov function + LaSalle Invariance Principle)

convexity analysis (first-order condition of convexity, interplay F1 and F2)

nonsmooth analysis (in the locally Lipschitz case)

Interestingly, Lyapunov function does not depend on particular graphs

V (x1, z1,x2, z2) =
1

2
(x1 − x∗1)T (x1 − x∗1) +

1

2
(z1 − z∗1)T (z1 − z∗1)

+
1

2
(x2 − x∗2)T (x2 − x∗2) +

1

2
(z2 − z∗2)T (z2 − z∗2)

Consequences:

analysis is also valid for dynamic network connected topologies
(common Lyapunov function for switched system)

convergence result valid also for ‘connected at times’ dynamic case
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Robustness to link failures

What if agent interactions fail from time to time?

E.g., i receives information from j, but j does not receive it from i

Interaction topology becomes directed

Different problem depending on nature and frequency of failures

‘Closest’ to undirected case is weight-balanced digraph (sum of
weights of in-edges equals sum of weights of out-edges at each vertex)

Mark also appreciates challenges posed by unidirectional information flows
and nice structure behind weight-balanced digraphs

D. Lee and M. W. Spong. Stable flocking of multiple iner-

tial agents on balanced graphs. IEEE Transactions on Au-

tomatic Control, 52(8):1469–1475, 2007
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Graph-theoretic notions – cont’d

Network topology modeled via directed graph G = (V, E)

V is set of agent identities

E is set of edges between agents – information sharing

Relevant matrices and their properties

A is adjacency matrix (who interacts with whom)

L = diag(A1n)−A is out-Laplacian matrix

L1n = 0 (0 is an eigenvalue of L)

G is strongly connected if and only if rank(L(G)) = n− 1

G is weight-balanced iff 1T
nL = 0 iff L+ LT positive semidefinite
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Algorithm does not converge on digraphs

Algorithm in directed case ‘looks’ the same

ẋ1 = −L1x1 − L1z1 +∇x1
Ũ(x1,x2)

ż1 = L1x1

ẋ2 = −L2x2 − L2z2 −∇x2
Ũ(x1,x2)

ż2 = L2x2

but

is no longer saddle dynamics (∇F1, ∇F2 have terms with La & LT
a )

has correct equilibria only if graphs are weight-balanced

Even worse, one can show that in general dynamics is not convergent!

counterexample available

surprising given what we know about weight-balanced digraphs

J. Cortés (UCSD) Two-network zero-sum games Spongfest 23 / 27



Algorithm does not converge on digraphs

Algorithm in directed case ‘looks’ the same
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Distributed solution to directed 2-network 0-sum game

ẋ1 = −αL1x1 − L1z1 +∇x1
Ũ(x1,x2)

ż1 = L1x1

ẋ2 = −αL2x2 − L2z2 −∇x2
Ũ(x1,x2)

ż2 = L2x2

Theorem
For zero-sum game, with Σ1, Σ2 strongly connected, weight-balanced,
U : X1 × X2 → R strictly concave-convex and differentiable with globally
Lipschitz gradient that admits lift to Ũ , there is α∗ such that for α ∈ (α∗,∞),

projection onto the first and third components of trajectories
asymptotically converge to the Nash equilibrium

[Specifically, α∗ = β∗ + 2/β∗, where β∗ > 0 is root of

h(r) =
1

2
Λ

min
∗

(√√√√( r4 + 3r2 + 2

r

)2 − 4 −
r4 + 3r2 + 2

r

)
+

Kr2

(1 + r2)

Λmin
∗ = mina=1,2{Λ∗(La + LTa )}, Λ∗(·) smallest non-zero eigenvalue and K is Lipschitz constant of ∇Ũ ]
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ẋ1 = −αL1x1 − L1z1 +∇x1
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Proof summary

Similar tools as undirected case – technically more challenging because of
unidirectional interactions

Lyapunov function of undirected case does not work

Alternative function via understanding of counterexample

Convexity analysis uses (novel) generalization of cocoercivity of
concave-convex functions

Σ1

Σ2

Σeng

w1

w2

w3

w4

v1

v2

v3
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Simulation of scenario with communication channels

5 channels

Σ1 selects ch1, ch3 with signal power x1,
ch2, ch4 with signal power x2

Σ2 selects ch1 with noise power y1, ch2,
ch3, ch4 with noise power y2

Σ1 Σ2Σeng

v1

v4

v2

v3

v5

v1

v2

v5
v4

v3
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Summary

Conclusions

strategic scenarios with partial information and distributed interactions

distributed algorithms that converge to Nash equilibria

dynamic interaction topologies, robustness to link failures

Future work

robustness to noise

interplay between strategic-distributed,
transmission-acquisition of information

hierarchy of layers with cooperation and competition

deception mechanisms, robustness against deception

Server in link

Wireless voice link

Hardline voice link

Blue action unit

Red action unit

Sensing asset

Blue Human

Red Human

Happy Birthday Mark!
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